Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Virol ; 96(17): e0074122, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992937

ABSTRACT

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Subject(s)
Coronavirus Infections , Host Microbial Interactions , Middle East Respiratory Syndrome Coronavirus , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitination , Viral Proteins , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/immunology , Humans , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Targeted Therapy , Proteasome Endopeptidase Complex/metabolism , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
2.
J Biol Chem ; 298(2): 101584, 2022 02.
Article in English | MEDLINE | ID: covidwho-1699145

ABSTRACT

With the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), coronaviruses have begun to attract great attention across the world. Of the known human coronaviruses, however, Middle East respiratory syndrome coronavirus (MERS-CoV) is the most lethal. Coronavirus proteins can be divided into three groups: nonstructural proteins, structural proteins, and accessory proteins. While the number of each of these proteins varies greatly among different coronaviruses, accessory proteins are most closely related to the pathogenicity of the virus. We found for the first time that the ORF3 accessory protein of MERS-CoV, which closely resembles the ORF3a proteins of severe acute respiratory syndrome coronavirus and SARS-CoV-2, has the ability to induce apoptosis in cells in a dose-dependent manner. Through bioinformatics analysis and validation, we revealed that ORF3 is an unstable protein and has a shorter half-life in cells compared to that of severe acute respiratory syndrome coronavirus and SARS-CoV-2 ORF3a proteins. After screening, we identified a host E3 ligase, HUWE1, that specifically induces MERS-CoV ORF3 protein ubiquitination and degradation through the ubiquitin-proteasome system. This results in the diminished ability of ORF3 to induce apoptosis, which might partially explain the lower spread of MERS-CoV compared to other coronaviruses. In summary, this study reveals a pathological function of MERS-CoV ORF3 protein and identifies a potential host antiviral protein, HUWE1, with an ability to antagonize MERS-CoV pathogenesis by inducing ORF3 degradation, thus enriching our knowledge of the pathogenesis of MERS-CoV and suggesting new targets and strategies for clinical development of drugs for MERS-CoV treatment.


Subject(s)
Apoptosis , Coronavirus Infections/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism , A549 Cells , Cell Line , Computational Biology , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Epithelial Cells/physiology , Epithelial Cells/virology , HEK293 Cells , Host-Pathogen Interactions , Humans
3.
Front Microbiol ; 12: 712081, 2021.
Article in English | MEDLINE | ID: covidwho-1497098

ABSTRACT

COVID-19 is mainly associated with respiratory distress syndrome, but a subset of patients often present gastrointestinal (GI) symptoms. Imbalances of gut microbiota have been previously linked to respiratory virus infection. Understanding how the gut-lung axis affects the progression of COVID-19 can provide a novel framework for therapies and management. In this study, we examined the gut microbiota of patients with COVID-19 (n = 47) and compared it to healthy controls (n = 19). Using shotgun metagenomic sequencing, we have identified four microorganisms unique in COVID-19 patients, namely Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and Prevotella bivia. The abundances of Bacteroides stercoris, B. vulgatus, B. massiliensis, Bifidobacterium longum, Streptococcus thermophilus, Lachnospiraceae bacterium 5163FAA, Prevotella bivia, Erysipelotrichaceae bacterium 6145, and Erysipelotrichaceae bacterium 2244A were enriched in COVID-19 patients, whereas the abundances of Clostridium nexile, Streptococcus salivarius, Coprococcus catus, Eubacterium hallii, Enterobacter aerogenes, and Adlercreutzia equolifaciens were decreased (p < 0.05). The relative abundance of butyrate-producing Roseburia inulinivorans is evidently depleted in COVID-19 patients, while the relative abundances of Paraprevotella sp. and the probiotic Streptococcus thermophilus were increased. We further identified 30 KEGG orthology (KO) modules overrepresented, with 7 increasing and 23 decreasing modules. Notably, 15 optimal microbial markers were identified using the random forest model to have strong diagnostic potential in distinguishing COVID-19. Based on Spearman's correlation, eight species were associated with eight clinical indices. Moreover, the increased abundance of Bacteroidetes and decreased abundance of Firmicutes were also found across clinical types of COVID-19. Our findings suggest that the alterations of gut microbiota in patients with COVID-19 may influence disease severity. Our COVID-19 classifier, which was cross-regionally verified, provides a proof of concept that a set of microbial species markers can distinguish the presence of COVID-19.

4.
Front Pharmacol ; 11: 583914, 2020.
Article in English | MEDLINE | ID: covidwho-1110320

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly throughout the world. Although COVID-19 has a relatively low case severity rate compared to SARS and Middle East Respiratory syndrome it is a major public concern because of its rapid spread and devastating impact on the global economy. Scientists and clinicians are urgently trying to identify drugs to combat the virus with hundreds of clinical trials underway. Current treatments could be divided into two major part: anti-viral agents and host system modulatory agents. On one hand, anti-viral agents focus on virus infection process. Umifenovir blocks virus recognizing host and entry. Remdesivir inhibits virus replication. Chloroquine and hydroxychloroquine involve preventing the whole infection process, including virus transcription and release. On the other hand, host system modulatory agents are associated with regulating the imbalanced inflammatory reaction and biased immune system. Corticosteroid is believed to be commonly used for repressing hyper-inflammation, which is one of the major pathologic mechanisms of COVID-19. Convalescent plasma and neutralizing antibodies provide essential elements for host immune system and create passive immunization. Thrombotic events are at high incidence in COVID-19 patients, thus anti-platelet and anti-coagulation are crucial, as well. Here, we summarized these current or reproposed agents to better understand the mechanisms of agents and give an update of present research situation.

5.
Int J Biol Macromol ; 176: 1-12, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1062378

ABSTRACT

SARS-CoV-2 is the etiological agent responsible for the ongoing pandemic of coronavirus disease 2019 (COVID-19). The main protease of SARS-CoV-2, 3CLpro, is an attractive target for antiviral inhibitors due to its indispensable role in viral replication and gene expression of viral proteins. The search of compounds that can effectively inhibit the crucial activity of 3CLpro, which results to interference of the virus life cycle, is now widely pursued. Here, we report that epigallocatechin-3-gallate (EGCG), an active ingredient of Chinese herbal medicine (CHM), is a potent inhibitor of 3CLpro with half-maximum inhibitory concentration (IC50) of 0.874 ± 0.005 µM. In the study, we retrospectively analyzed the clinical data of 123 cases of COVID-19 patients, and found three effective Traditional Chinese Medicines (TCM) prescriptions. Multiple strategies were performed to screen potent inhibitors of SARS-CoV-2 3CLpro from the active ingredients of TCMs, including network pharmacology, molecular docking, surface plasmon resonance (SPR) binding assay and fluorescence resonance energy transfer (FRET)-based inhibition assay. The SPR assay showed good interaction between EGCG and 3CLpro with KD ~6.17 µM, suggesting a relatively high affinity of EGCG with SARS-CoV-2 3CLpro. Our results provide critical insights into the mechanism of action of EGCG as a potential therapeutic agent against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Catechin/analogs & derivatives , Coronavirus 3C Proteases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Catechin/administration & dosage , Catechin/pharmacology , China/epidemiology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Female , Fluorescence Resonance Energy Transfer/methods , Humans , Male , Medicine, Chinese Traditional/methods , Middle Aged , Molecular Docking Simulation/methods , Pandemics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacology , Retrospective Studies , Virus Replication/drug effects , Young Adult
6.
Front Microbiol ; 11: 593857, 2020.
Article in English | MEDLINE | ID: covidwho-979022

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a widespread outbreak of highly pathogenic coronavirus disease 2019 (COVID-19). It is therefore important and timely to characterize interactions between the virus and host cell at the molecular level to understand its disease pathogenesis. To gain insights, we performed high-throughput sequencing that generated time-series data simultaneously for bioinformatics analysis of virus genomes and host transcriptomes implicated in SARS-CoV-2 infection. Our analysis results showed that the rapid growth of the virus was accompanied by an early intensive response of host genes. We also systematically compared the molecular footprints of the host cells in response to SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Upon infection, SARS-CoV-2 induced hundreds of up-regulated host genes hallmarked by a significant cytokine production, followed by virus-specific host antiviral responses. While the cytokine and antiviral responses triggered by SARS-CoV and MERS-CoV were only observed during the late stage of infection, the host antiviral responses during the SARS-CoV-2 infection were gradually enhanced lagging behind the production of cytokine. The early rapid host responses were potentially attributed to the high efficiency of SARS-CoV-2 entry into host cells, underscored by evidence of a remarkably up-regulated gene expression of TPRMSS2 soon after infection. Taken together, our findings provide novel molecular insights into the mechanisms underlying the infectivity and pathogenicity of SARS-CoV-2.

7.
Age Ageing ; 50(2): 284-293, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-929789

ABSTRACT

BACKGROUND: High incidence of venous thromboembolic complications in coronavirus disease 2019 (COVID-19) patients was noted recently. OBJECTIVE: This study aimed to explore the factors associated with prevalence of venous thromboembolism (VTE) in COVID-19 patients. METHODS: A literature search was conducted in several online databases. Fixed effects meta-analysis was performed for the factors associated with prevalence of VTE in COVID-19 patients. RESULTS: A total of 39 studies were analysed in this analysis. The incidence of pulmonary embolism and VTE in severe COVID-19 patients were 17% (95% CI, 13-21%) and 42% (95% CI, 25-60%), respectively. VTE were more common among individuals with COVID-19 of advance age. Male COVID-19 patients are more likely to experience VTE. Higher levels of white blood cell (WBC; WMD = 1.34 × 109/L; 95% CI, 0.84-1.84 × 109/L), D-dimer (WMD = 4.21 µg/ml; 95% CI, 3.77-4.66 µg/ml), activated partial thromboplastin time (APTT; WMD = 2.03 s; 95% CI, 0.83-3.24 s), fibrinogen (WMD = 0.49 µg/ml; 95% CI, 0.18-0.79 g/L) and C-reactive protein (CRP; WMD = 21.89 mg/L; 95% CI, 11.44-32.34 mg/L) were commonly noted in COVID-19 patients with VTE. Patients with lower level of lymphocyte (WMD = -0.15 × 109/L; 95% CI, -0.23--0.07 × 109/L) was at high risk of developing VTE. The incidence of severe condition (OR = 2.66; 95% CI, 1.95-3.62) was more likely to occur among COVID-19 patients who developed VTE. CONCLUSION: VTE is a common complication in severe COVID-19 patients and thromboembolic events are also associated with adverse outcomes.


Subject(s)
COVID-19 , Venous Thromboembolism , Aged , Blood Coagulation Tests/methods , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Humans , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Venous Thromboembolism/diagnosis , Venous Thromboembolism/etiology
8.
BMJ Support Palliat Care ; 11(1): 45-52, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-788171

ABSTRACT

BACKGROUND: Because of the lack of vaccination, it is urgent to find effective antiviral agents for COVID-19 treatment. METHOD: Online databases were searched for articles published before or on 22 June 2020. Studies reporting the effectiveness and safety of antiviral agents for COVID-19 were analysed. RESULTS: A total of 42 studies were included in this analysis. Hydroxychloroquine (HCQ) was not associated with the incidence of death (risk ratio (RR)=1.08; 95% CI 0.81 to 1.44) and severe cases (RR=1.05; 95% CI 0.61 to 1.81). Patients treated with HCQ obtained few benefits with respect to the clearance of viral RNA and were more likely to have adverse reactions. HCQ treatment could shorten the body temperature recovery time (weighted mean difference = -1.04; 95% CI -1.64 to -0.45). Lopinavir/ritonavir (LPV/r) (RR=0.90; 95% CI 0.76 to 1.07) and Arbidol (RR=1.09; 95% CI 0.92 to 1.29) were not associated with the negative conversion rate. Integrative Chinese-Western medicine alleviated clinical symptoms and decreased the incidence of severe cases (RR=0.38; 95% CI 0.25 to 0.59). Remdesivir treatment reduced the 14-day mortality rate of patients with severe COVID-19 (RR=0.64; 95% CI 0.44 to 0.94). Convalescent plasma (CP) tended to increase the negative conversion rate (RR=2.47; 95% CI 1.70 to 3.57). CONCLUSION: HCQ, LPV/r and Arbidol bring little benefit in COVID-19 treatment. Integrative Chinese-Western medicine improved the clinical symptoms of patients with COVID-19. Remdesivir and CP might be the potential treatments for patients with severe COVID-19. However, large-scale clinical randomised trials are needed to validate our conclusions.


Subject(s)
Antirheumatic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/therapy , Immunologic Factors/therapeutic use , Medicine, Chinese Traditional , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Indoles/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment , COVID-19 Serotherapy
9.
Rev Med Virol ; 31(2): e2168, 2021 03.
Article in English | MEDLINE | ID: covidwho-763331

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally to over 200 countries with more than 23 million confirmed cases and at least 800,000 fatalities as of 23 August 2020. Declared a pandemic on March 11 by World Health Organization, the disease caused by SARS-CoV-2 infection, called coronavirus disease 2019 (COVID-19), has become a global public health crisis that challenged all national healthcare systems. This review summarized the current knowledge about virologic and pathogenic characteristics of SARS-CoV-2 with emphasis on potential immunomodulatory mechanism and drug development. With multiple emerging technologies and cross-disciplinary approaches proving to be crucial in our global response against COVID-19, the application of PROteolysis TArgeting Chimeras strategy, CRISPR-Cas9 gene editing technology, and Single-Nucleotide-Specific Programmable Riboregulators technology in developing antiviral drugs and detecting infectious diseases are proposed here. We also discussed the available but still limited epidemiology of COVID-19 as well as the ongoing efforts on vaccine development. In brief, we conducted an in-depth analysis of the pathogenesis of SARS-CoV-2 and reviewed the therapeutic options for COVID-19. We also proposed key research directions in the future that may help uncover more underlying molecular mechanisms governing the pathology of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/therapeutic use , Humans , Pandemics , Public Health , SARS-CoV-2/genetics
10.
Cell Host Microbe ; 27(3): 325-328, 2020 03 11.
Article in English | MEDLINE | ID: covidwho-709361

ABSTRACT

An in-depth annotation of the newly discovered coronavirus (2019-nCoV) genome has revealed differences between 2019-nCoV and severe acute respiratory syndrome (SARS) or SARS-like coronaviruses. A systematic comparison identified 380 amino acid substitutions between these coronaviruses, which may have caused functional and pathogenic divergence of 2019-nCoV.


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/virology , Genome, Viral , Phylogeny , Pneumonia, Viral/virology , Amino Acid Substitution , COVID-19 , China , Middle East Respiratory Syndrome Coronavirus , Pandemics , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2
11.
Aging Dis ; 11(4): 874-894, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-696953

ABSTRACT

This study aimed to provide systematic evidence for the association between multiorgan dysfunction and COVID-19 development. Several online databases were searched for articles published until May 13, 2020. Two investigators independently selected trials, extracted data, and evaluated the quality of individual trials. Single-arm meta-analysis was performed to summarize the clinical features of confirmed COVID-19 patients. Fixed effects meta-analysis was performed for clinically relevant parameters that were closely related to the patients' various organ functions. A total of 73 studies, including 171,108 patients, were included in this analysis. The overall incidence of severe COVID-19 and mortality were 24% (95% confidence interval [CI], 20%-28%) and 2% (95% CI, 1%-3%), respectively. Patients with hypertension (odds ratio [OR] = 2.40; 95% CI, 2.08-2.78), cardiovascular disease (CVD) (OR = 3.54; 95% CI, 2.68-4.68), chronic obstructive pulmonary disease (COPD) (OR=3.70; 95% CI, 2.93-4.68), chronic liver disease (CLD) (OR=1.48; 95% CI, 1.09-2.01), chronic kidney disease (CKD) (OR = 1.84; 95% CI, 1.47-2.30), chronic cerebrovascular diseases (OR = 2.53; 95% CI, 1.84-3.49) and chronic gastrointestinal (GI) disease (OR = 2.13; 95% CI, 1.12-4.05) were more likely to develop severe COVID-19. Increased levels of lactate dehydrogenase (LDH), creatine kinase (CK), high-sensitivity cardiac troponin I (hs-cTnI), myoglobin, creatinine, urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin were highly associated with severe COVID-19. The incidence of acute organ injuries, including acute cardiac injury (ACI); (OR = 11.87; 95% CI, 7.64-18.46), acute kidney injury (AKI); (OR=10.25; 95% CI, 7.60-13.84), acute respiratory distress syndrome (ARDS); (OR=27.66; 95% CI, 18.58-41.18), and acute cerebrovascular diseases (OR=9.22; 95% CI, 1.61-52.72) was more common in patients with severe COVID-19 than in patients with non-severe COVID-19. Patients with a history of organ dysfunction are more susceptible to severe conditions. COVID-19 can aggravate an acute multiorgan injury.

SELECTION OF CITATIONS
SEARCH DETAIL